Metathesis Approach to the Synthesis of Polyheterocyclic Structures from Oxanorbornenes

ORGANIC LETTERS 2004 Vol. 6, No. 21 ³⁸²¹-**³⁸²⁴**

Jeffrey D. Winkler,* Sylvie M. Asselin, Stacey Shepard,† and Jing Yuan‡

*Department of Chemistry, Uni*V*ersity of Pennsyl*V*ania Philadelphia, Pennsyl*V*ania 19104*

winkler@sas.upenn.edu

Received August 11, 2004

ABSTRACT

The synthesis of stereochemically defined tri- and penta-heterocyclic ring systems 9 and 28, respectively, via the metathesis reaction of substituted oxanorbornanes derived from 3 is described.

The ring-opening metathesis polymerization of norbornenes by Grubbs established the remarkable properties of rutheniumbased catalyst systems for the efficient transformation of strained alkenes.¹ Since that time, the synthetic utility of metathesis ring closure has been demonstrated in the synthesis of both natural² and unnatural products.^{2c,3} We reasoned that this methodology could be applied to the construction of polyheterocyclic rings systems **2** via the metathesis reaction of **1**, as outlined in Scheme 1. We

‡ Current address: Concurrent Pharmaceuticals, Fort Washington, PA. (1) For reviews of ring-opening metathesis: (a) Grubbs, R. H.; Khosravi, E. *Mater. Sci. Technol.* **¹⁹⁹⁹**, *²⁰*, 65-104. (b) Grubbs, R. H. *J. Macromol. Sci., Pure Appl. Chem.* **¹⁹⁹⁴**, *A31*, 1829-33. (c) Grubbs, R. H.; Chang, S. *Tetrahedron* **¹⁹⁹⁸**, *⁵⁴*, 4413-4450.

(2) For recent reviews on ring-closing metathesis in natural product synthesis, see: (a) Deiters, A.; Martin, S. F. *Chem. Re*V*.* **²⁰⁰⁴**, *¹⁰⁴*, 2199- 2238. (b) Fu¨rstner, A. *Eur. J. Org. Chem.* **²⁰⁰⁴**, *⁵*, 943-958. (c) Diver, S. T.; Giessert, A. J. *Chem. Re*V*.* **²⁰⁰⁴**, *¹⁰⁴*, 1317-1382.

(3) For some recent representative examples, see: (a) Hebach, C.; Kazmaier, U. *J. Chem. Soc., Chem. Commun.* **²⁰⁰³**, 596-597. (b) Schafmeister, C. E.; Po, J.; Verdine, G. L. *J. Am. Chem. Soc.* **2000**, *122*, ⁵⁸⁹¹-5892. (c) Boger, D. L.; Hong, J*. J. Am. Chem. Soc.* **²⁰⁰¹**, *¹²³*, 8515- 8519. (d) Belvisi, L.; Colombo, L.; Colombo, M.; Di Giacomo, M.; Manzoni, L.; Vodopivec, B.; Scolastico, C. *Tetrahedron* **²⁰⁰¹**, *⁵⁷*, 6463- 6473. (e) Fürstner, A.; Grela, K.; Mathes, C.; Lehmann, C. W. *J. Am. Chem. Soc.* **²⁰⁰⁰**, *¹²²*, 11799-11805. (f) Smulik, J. A.; Diver, S. T.; Pan, F.; Liu, J. O. *Org. Lett.* **²⁰⁰²**, *⁴*, 2051-2054. (g) Roy, R.; Das, S. K.; Dominique, R.; Trono, M. C.; Hernandez-Mateo, F.; Santoyo-Gonzalez, F. *Pure Appl. Chem.* **¹⁹⁹⁹**, *⁷¹*, 565-571.

10.1021/ol0484106 CCC: \$27.50 © 2004 American Chemical Society **Published on Web 09/23/2004**

demonstrate herein that this strategy leads to the efficient synthesis of novel tri- and pentacyclic arrays of heterocyclic rings.4

We reasoned that the oxanorbornene-derived metathesis substrate **1** could be prepared in an iterative fashion from

[†] Current address: Incyte Pharmaceuticals, Wilmington, DE. Department of Energy Plant Sciences Graduate Fellow, 1998-2000; 2001-2002 Bristol-Myers Squibb Graduate Fellowship in Organic Synthesis. University of Pennsylvania School of Arts and Sciences Dean's Scholar, 2001.

⁽⁴⁾ For the application of ring-opening/ring-closing metathesis to synthesis of polycyclic ring systems, see: (a) Lee, D.; Sello, J. K.; Scheiber, S. L. *Org. Lett.* **²⁰⁰⁰**, *²*, 709-712. (b) Choi, T.-L.; Grubbs, R. H. *Chem. Commun.* **²⁰⁰¹**, 2648-2649. (c) Zuercher, W. J.; Hashimoto, M.; Grubbs, R. H*. J. Am. Chem. Soc.* **¹⁹⁹⁶**, *¹¹⁸*, 6634-6640. (d) Stragies, R.; Blechert, S. Synlett 1998, 169-170. (e) Arjona, O.; Csáky, A. G.; Murcia, M. C.;

optically pure β -amino acid ester 3^5 (Scheme 2). Saponification of **3** followed by *O*-allylation provided allyl ester **4**,

which underwent *N*-alkylation (allyl bromide, sodium hydride) to generate the metathesis substrate **5**. Exposure of **5** to the second-generation Grubbs catalyst **6**⁶ in the presence of ethylene led to the opening of the oxanorbornene to generate tetraene **7**. Bubbling argon through the reaction mixture to purge the system of ethylene at 25 °C initially afforded the six-membered tetrahydropyridine ring intermediate **8**. Warming the resulting solution to reflux for 2 h gave **9**, the product of two metathesis cyclization reactions, i.e., closure of both the six- and seven-membered rings. The efficiency of the metathesis cascade proved to be dependent on the concentration of **5**. Reaction of **5** with the Grubbs catalyst **6** at 3 mM led to the formation of multiple products and low and variable yields of **9**. However, exposure of a 0.5 mM solution of **5** to **6** afforded **9** in 50% yield. The structure and stereochemistry of **9** was secured by X-ray crystallographic analysis of the derived secondary amine.7

The lactam analogue of **9**, compound **13**, was prepared in a similar manner from **3** as outlined in Scheme 3. *N*-Allylation of **3** followed by hydrolysis and condensation of the resulting carboxylic acid with allylamine gave amide **12**. Reaction of **12** with the Grubbs catalyst under conditions

Plumet, J. *Tetrahedron Lett.* **²⁰⁰⁰**, *⁴¹*, 9777-9779. (f) Usher, L. C.; Estrella-Jimenez, M.; Ghiviriga, I.; Wright, D. L. *Angew. Chem., Int. Ed.* **2002**, *41*, ⁴⁵⁶⁰-4562. (g) Wrobleski, A.; Sahasrabudhe, K.; Aube´, J. *J. Am. Chem. Soc.* **²⁰⁰⁴**, *¹²⁶*, 5475-5481.

(6) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. *Org. Lett.* **1999**, 1, ⁹⁵³-956. (7)

similar to those employed with **5** led to the formation of **13** in 95% yield. The *N*-benzyl amide functionality in **12** was critical to the success of the seven-membered ring formation, as it led to an increase of the population of the amide rotamer required for the formation of **13**. 8

We next examined the extension of this sequence to the metathesis of dimer **16**, in which six-, seven-, and eightmembered rings would be generated in the formation of **18**. The synthesis of the requisite metathesis substrate is outlined in Scheme 4. Reaction of the acid chloride **14** derived from

acid **11** with amine **15**⁹ led to the formation of the metathesis substrate **16** in 39% yield. However, exposure of **16** to the

⁽⁵⁾ Doerksen, R. J.; Chen B.; Yuan, J.; Winkler, J. D.; Klein, M. L. *Chem. Commun.* **²⁰⁰³**, 2534-2535.

⁽⁸⁾ Lactam formation using ring-closing metathesis: Vo-Thanh, G.; Boucard, V.; Sauriat-Dorizon, H.; Guibe´, F. *Synlett*. **²⁰⁰¹**, 37-40.

metathesis cyclization conditions employed for the formation of **13** from **12** led to none of the desired pentacyclic product **18**. Careful examination of the reaction mixture revealed that trace amounts of **17** were produced, the result of six- and seven-membered ring formation from **16**.

To separately examine the feasibility of the formation of the eight-membered ring in **18**, we examined the metathesis reaction of **17**, the synthesis of which is outlined in Scheme 5. Grubbs metathesis of **19**⁹ with ethylene gave, after removal

of the *tert*-butyl carbamate, the secondary amine **20**. Reaction of allyl amino ester **10** with Grubbs catalyst **6** and ethylene, followed by hydrolysis of the ester **21**, led to the formation of bicyclic acid **22**. The coupling of **22** and the sterically hindered amine **20** proved to be challenging. After extensive experimentation, we ultimately found that the metathesis substrate **17** could be prepared in a modest 18% yield using Mukaiyama's reagent **23**. ¹⁰ Reaction of **17** with Grubbs catalyst **6** gave none of the desired eight-membered ringcontaining product **18** under a variety of reaction conditions.

The presence of the *N*-benzyl group in **17** was apparently not sterically demanding enough to overcome the effect of

(9) Compound **15** was synthesized by removal of the *tert*-butyl carbamate of compound **19** ((i) TFA, DCM 0 $^{\circ}$ C; (ii) aq K₂CO₃, 56%), which in turn resulted from the benzylation of **4** (BnBr, NaH, DMF, 78%).

the branched bicyclic moiety in promoting the trans conformation of the amide shown in *trans*-**17**. The absence of rotameric peaks in the ¹ H NMR spectrum of **17** is consistent with the existence of only *trans*-**17** and not *cis*-**17**. The failure to observe eight-membered ring formation can therefore be attributed to the absence of the *cis* conformation of the amide (*cis*-**17**) that is required for cyclization. In the case of the successful reaction of **12** (Scheme 3), the similar steric environments of the *N*-benzyl and *N*-allyl groups leads to the population of the *cis*- as well as the *trans*-amide rotamers of **12**, thereby facilitating the formation of **13**.

To remove the stereoelectronic constraints of the amide linkage in **17**, we prepared sulfonamide **27**. As outlined in Scheme 6, reductive amination¹¹ of aldehyde 25^{12} with the

amine derived from TFA salt **24**¹³ provided **26** in good yield. Secondary amine 26 ($R = H$) was then treated with *p*-toluenesulfonyl chloride (TEA, DMAP, 80%) to provide metathesis substrate **27**. We were gratified to find that exposure of **27** to the Grubbs catalyst led to the formation of **²⁸** (60-⁸⁰ °C, 72 h), albeit in a modest yield of 26%.

Having established that the Grubbs metathesis reaction could be used to form the central eight-membered ring of **28**, we returned to the cascade metathesis reaction of **34**, the synthesis of which is outlined in Scheme 7. Reduction of **¹⁰** to alcohol **²⁹**, followed by Dess-Martin oxidation, gave aldehyde **30**. The reductive amination of **30** proved to be very challenging. Addition of sodium triacetoxyborohydride and acetic acid to a solution of the TFA salt of **31**¹⁴

⁽¹⁰⁾ Bald, E.; Saigo, K.; Mukaiyama, T. *Chem. Lett.* **1975**, 1163.

⁽¹¹⁾ Abdel-Magid, A.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. *J. Org. Chem.* **¹⁹⁹⁶**, *⁶¹*, 3849-3862.

⁽¹²⁾ Compound **25** was synthesized from **21** by reducing the methyl ester to the alcohol (DIBAL-H, 62%) followed by oxidation to the aldehyde (Dess-Martin periodinane, 73%).

⁽¹³⁾ Compound **24** was made starting with compound **4** ((a) 30 mol % **6**, ethylene, CH_2Cl_2 [0.5 mM], 25 °C to reflux, 31%; (b) TFA, quantitative yield).

and aldehyde **30** furnished **32** (44% overall yield from alcohol **²⁹**), the apparent result of retro Diels-Alder reaction of the desired reductive amination product **33**. Separate exposure of **³⁰** to TFA led to facile retro Diels-Alder fragmentation, establishing the lability of **30** to these acidic reaction conditions. We therefore examined the addition of sodium triacetoxyborohydride to a solution of the free amine **31** (no TFA or CH3COOH) and aldehyde **30**, which led to the formation of a 1:1.8 mixture of the desired bisoxanorbornene **³³** and the retro Diels-Alder product **³²**. The ratio of the desired product **33** to **32** could be improved to 6:1 by immediate addition of the reducing agent to the solution of **30** and **31**. Separation of **32** and **33** could be achieved after conversion of the mixture of secondary amines to **34** and the sulfonamide corresponding to **32**.

After extensive experimentation, it was found that reaction of **34** with a full equivalent of the Grubbs catalyst over 24 h led to the formation of **28** in 10% yield. The remarkable metathesis cascade reaction of **34** leads to the formation of new six-, seven-, and eight-membered rings in a single step. Further studies on the improvement of this process are currently underway in our laboratory, and our progress will be reported in due course.

Acknowledgment. We would like to thank the National Institutes of Health (CA40250) and GlaxoSmithKline for their generous support of this program, and the University of Pennsylvania, the Department of Energy, and Bristol-Myers Squibb for fellowship support (S.S.).

Supporting Information Available: Detailed experimental procedures and spectral data for **³**-**³⁴** and X-ray data for the secondary amine derived from carbamate **9**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0484106

⁽¹⁴⁾ TFA salt of compound **31** was prepared in quantitative yield from **4** by treatment with TFA in CH_2Cl_2 . Compound 31 was then made by treating the TFA salt with $KHCO₃$ (aq).